568. Molecular Polarisability. The Dipole Moments, Molar Kerr Constants, and Conformations of Eleven Phosphate and Phosphite Triesters as Solutes in Benzene.

By M. J. Aroney, L. H. L. Chia, R. J. W. Le Fèvre, and J. D. Saxby.

Dipole moments, molar Kerr constants, and refractivities are recorded for the molecules $(\mathrm{RO})_{3} \mathrm{PO}\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{n}}, \mathrm{Pr}^{\mathrm{i}}, \mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}, \mathrm{Ph}\right)$ and $(\mathrm{RO})_{3} \mathrm{P}$ $\left(\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \operatorname{Pr}^{\mathrm{i}}, n-\mathrm{C}_{10} \mathrm{H}_{21}, \mathrm{Ph}\right)$ as solutes in benzene. The principal polarisability semi-axes have been calculated from the observational data, assuming C_{3} symmetry. The polarities and polarisabilities of the solutes are interpreted in terms of equivalent molecular conformations, using known bond and group parameters. The polarisability specifications of the groups $\mathrm{O}_{3} \mathrm{P}$ and $\mathrm{O}_{3} \mathrm{PO}$, derived from previously documented measurements on the constrained phosphite ester 4-methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane and its oxide, are shown to be inapplicable.

This Paper is concerned with the measurement of the polarities and the electric birefringences of eleven phosphate and phosphite triesters, and the extraction from such data of information on the configurations of these molecules as solutes in benzene. The experimental quantities are listed in Tables $\mathbf{1}$ and 2.

Table 1.
Incremental Kerr constants, refractive indices, dielectric constants, and densities for solutions in benzene at 25°.

Solute: Trimethyl phosphate

Solute: Tri-isopropyl phosphate						
$10^{5} w_{2}$	2677	3626	4728	5183	6094	7164
$10^{7} \Delta B$	-0.069	-0.096	$-0 \cdot 134$	-	$-0 \cdot 166$	-0.211
$10^{4} \Delta n$.	-24	-31	-44	-49	-51	-67
ε^{25}	2.3706	$2 \cdot 4044$	2.4504	$2 \cdot 4606$	2.4924	2.5334
$d_{4}{ }^{25}$..	$0 \cdot 87626$	0.87730	0.87820	$0 \cdot 87864$	$0 \cdot 87998$	$0 \cdot 88065$
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-2.78 ; \Sigma \Delta n / \Sigma w_{2}=-0.090 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=3.65 ; \Sigma \Delta d / \Sigma w_{2}=0.096$.						

Table 1. (Continued.)
Solute: Tri-n-pentyl phosphate

$10^{5} w_{2}$	2450	3094	4514	5742	6698	8663
$10^{7} \Delta B$	-0.085	-	-0.145	-	-0.234	-
$10^{4} \Delta n$.	-15	-24	-35	-40	-45	-55
ε^{25}	$2 \cdot 3523$	$2 \cdot 3752$	$2 \cdot 4189$	$2 \cdot 4626$	$2 \cdot 4945$	2.5615
$d_{4}{ }^{25} \ldots$	$0 \cdot 87548$	0.87592	$0 \cdot 87694$	0.87775	0.87846	0.87989
	whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-3.40 ; \Sigma \Delta n / \Sigma w_{2}=-0.069 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=3.31 ; \Sigma \Delta d / \Sigma w_{2}=0.070$.					

Solute: Tviphenyl phosphate

$\begin{aligned} & 10^{5} w_{2} \ldots \ldots \\ & 10^{7} \Delta B \quad \ldots \end{aligned}$	$\begin{gathered} 2687 \\ -0.046 \end{gathered}$	$\begin{gathered} 3407 \\ -0.065 \end{gathered}$	$\begin{gathered} 3447 \\ -0.064 \end{gathered}$	$\begin{gathered} 4093 \\ -0.082 \end{gathered}$	$\begin{gathered} 4504 \\ -0.086 \end{gathered}$	
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-1.89$.						
$10^{5} w_{2} \ldots \ldots$	1682	2024	2513	3174	3407	4255
$10^{4} \Delta n \ldots \ldots$	11	12	14	20	20	26
whence $\Sigma \Delta n / \Sigma w_{2}=0.060$.						
$10^{5} w_{2} \ldots \ldots$.	1018	1533	1682	1893	2024	3174
$\varepsilon^{25} \ldots \ldots .$.	$2 \cdot 3039$	$2 \cdot 3181$	2.3239	2.3289	$2 \cdot 3345$	2.3690
$d_{4}{ }^{25} \ldots \ldots \ldots$.	$0 \cdot 87649$	$0 \cdot 87778$	0.87831	0.87869	0.87925	$0 \cdot 88213$
whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=3.03 ; ~ \Sigma \Delta d / \Sigma w_{2}=0.265$.						
Solute: Trimethyl phosphite						
$10^{5} w_{2} \ldots \ldots$.	2180	3196	3557	3786		
$10^{7} \Delta B$	$0 \cdot 046$	$0 \cdot 052$	$0 \cdot 067$	$0 \cdot 065$		
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=1.81$.						
$10^{5} w_{2} \ldots \ldots$.	3077	3878	5026	5789	7398	8453
$10^{4} \Delta n \ldots \ldots$.	-24	-28	-41	-46	-58	-67
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 3519$	2.3732	$2 \cdot 4037$	$2 \cdot 4306$	$2 \cdot 4691$	$2 \cdot 5053$
$d_{4}{ }^{25} \ldots \ldots \ldots$.	0.87824	$0 \cdot 87945$	0.88118	0.88233	0.88467	$0 \cdot 88623$

whence $\Sigma \Delta \varepsilon / \Sigma w_{2}=2.67 ; \Sigma \Delta d / \Sigma w_{2}=0.147 ; \Sigma \Delta n / \Sigma w_{2}=-0.079$.

				Solute:	Triethyl	sphite				
$10^{5} w_{2} \ldots \ldots$	1527	2240	2358	2588	3831	5071	5278	5673	5854	7178
$10^{7} \Delta B \quad \ldots$	-	-	-	-	-0.005	-	-	-0.010	-0.012	-0.013
$10^{4} \Delta n \ldots \ldots$		-20			-	-	-44	-47	-	-58
$\varepsilon^{25} \ldots \ldots \ldots$.	$2 \cdot 3022$	$2 \cdot 3139$	$2 \cdot 3178$	$2 \cdot 3222$	$2 \cdot 3446$	$2 \cdot 3669$	-	-	一	2.4129
$d_{4}{ }^{25}$	-	0.87562	0.87565	$0 \cdot 87578$	-	0.87767	-	0.87843	-	$0 \cdot 87908$

Solute: Tri-isopropyl phosphite										
$10^{5} w_{2} \ldots \ldots$.	3105	3564	4201	4365	5683	6076	6644	7172	8453	8619
$10^{7} \Delta B$	-	-	-0.062	-0.058	-0.073	-0.083	-	-0.104	$-0 \cdot 109$	
$10^{4} \Delta n$.	-	-29	-	-41	-	-53	-56	-60	-76	
ε^{25}	$2 \cdot 3198$	$2 \cdot 3264$	-	-	-	2.3644	-	$2 \cdot 3783$	2.3999	
$d_{4}{ }^{25}$	$0 \cdot 87484$	$0 \cdot 87491$	-	$0 \cdot 87528$	-	$0 \cdot 87578$	$0 \cdot 87620$	$0 \cdot 87610$	0.87655	$0 \cdot 8767$

Solute: Tri-n-decyl phosphite								
$10^{5} w_{2} \ldots \ldots$.	2599	3225	3864	4607	5386	6670	7414	8282
$10^{7} \Delta B$			-	-	-0.116	$-0 \cdot 138$	-0.146	-0.146
$10^{4} \Delta n \ldots \ldots$.	-13		-19	-20	-27	-35	-	-41
ε^{25}	2.2892	$2 \cdot 2905$	$2 \cdot 2943$	2.2983	$2 \cdot 3067$	$2 \cdot 3084$	$2 \cdot 3104$	$2 \cdot 3177$
$d_{4}{ }^{25}$.	0.87396		0.87406	$0 \cdot 87410$	$0 \cdot 87416$	$0 \cdot 87426$		0.87438
whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-1.97 ; ~ \Sigma \Delta n / \Sigma w_{2}=-0.049 ; ~ \Sigma \Delta \varepsilon / \Sigma w_{2}=0.56 ; ~ \Sigma \Delta d / \Sigma w_{2}=0.007$.								

Solute: Triphenyl phosphite								
$10^{5} w_{2} \ldots \ldots$	2370	2833	3559	4757	5202	5328	6280	8369
$10^{7} \Delta B \quad \ldots$	-0.020	-	-0.034	-	-0.051	-	-0.068	-0.083
$10^{4} \Delta n \ldots$	15	19	22	29	35	35	39	55
ε^{25}	2.2979	$2 \cdot 3027$	$2 \cdot 3098$	-	$2 \cdot 3264$	$2 \cdot 3300$	$2 \cdot 3379$	$2 \cdot 3601$
$d_{4}{ }^{25}$.	0.87948	$0 \cdot 88059$	0.88242	0.88537	$0 \cdot 88645$	$0 \cdot 88666$	0.88905	$0 \cdot 89336$

[^0]Table 2.
Polarisations, dipole moments, and molar Kerr constants (from observations on solutions in benzene at 25°).

Solute	$\alpha \varepsilon_{1}$	β	γ	δ	∞P_{2} (c.c.)	R_{D} (c.c.)	$\mu(\mathrm{D})$ *	$10^{12} \infty\left({ }_{m} K_{2}\right)$
$(\mathrm{MeO})_{3} \mathrm{PO}$	$7 \cdot 68$	$0 \cdot 283$	-0.049	-5.49	237	$27 \cdot 8$	$3 \cdot 18$	-88
$(\mathrm{EtO})_{3} \mathrm{PO}$	$5 \cdot 61$	$0 \cdot 181$	-0.050	-8.02	243	$42 \cdot 1$	$3 \cdot 12$	-135
$\left(\mathrm{Pr}^{\mathrm{n} O}\right){ }_{3} \mathrm{PO}$	$4 \cdot 69$	$0 \cdot 137$	-0.050	-9.59	264	$54 \cdot 9$	$3 \cdot 18$	-184
$\left(\mathrm{Pr}^{1} \mathrm{O}\right){ }_{3} \mathrm{PO}$	3.65	0.110	-0.060	-6.78	222	$54 \cdot 8$	$2 \cdot 84$	-128
$\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}\right)_{3} \mathrm{PO}$	3.31	0.080	-0.046	-8.29	289	82.5	$3 \cdot 14$	-207
$(\mathrm{PhO})_{3} \mathrm{PO}$	$3 \cdot 03$	0.303	+0.040	-4.61	263	$87 \cdot 4$	$2 \cdot 89$	-133
$(\mathrm{MeO})_{3} \mathrm{P}$	$2 \cdot 67$	$0 \cdot 168$	-0.053	$4 \cdot 41$	$97 \cdot 5$	$28 \cdot 8$	1.81	+38
(EtO) ${ }_{3} \mathrm{P}$	1.91	0.089	-0.055	$-0 \cdot 43$	111	$42 \cdot 8$	1.80	-4.4
$\left(\mathrm{Pr}^{1} \mathrm{O}\right){ }_{3} \mathrm{P}$	1.50	0.039	-0.058	-3.32	127	56.3	1.82	-47
$\left(\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{O}\right)_{3} \mathrm{P}$	0.56	0.008	-0.033	-4.80	223	152	1.75	-153
(PhO$)_{3} \mathrm{P} \ldots . . .$.	1.05	0.275	+0.043	-2.41	138	$87 \cdot 2$	1.51	-52

Experimental

Materials, Apparatus, etc.-The esters were prepared and/or purified, to give trimethyl phosphate (b. p. 197-198 ${ }^{\circ}$), triethyl phosphate (b. p. 215-216 $)$, tri-n-propyl phosphate (b. p. 115-117 $/ 8 \mathrm{~mm}$.), tri-isopropyl phosphate (b. p. $123-125^{\circ} / 19-20 \mathrm{~mm}$.), tri-n-pentyl phosphate (b. p. $220-224^{\circ} / 38-40 \mathrm{~mm}$.), triphenyl phosphate (m. p. 50°), trimethyl phosphite (b. p. 111-113 ${ }^{\circ}$), triethyl phosphite (b. p. 156-158 ${ }^{\circ}$), tri-isopropyl phosphite (b. p. 76$78^{\circ} / 21-22 \mathrm{~mm}$.), tri-n-decyl phosphite (b. p. $220-222^{\circ} / 0 \cdot 7 \mathrm{~mm}$.), triphenyl phosphite (b. p. $200-203^{\circ} / 5-6 \mathrm{~mm}$.).

Details of procedures, apparatus, computational methods, symbols used, etc., are given in refs. $1-3$. For pure benzene (i.e., when $w_{2}=0$ in Table 1) at 25°, the properties indicated have values as follows: ε (dielectric constant) $=2.2725$; d (density) $=0.87378 ; n$ (refractive index) $=1.4973 ; B$ (Kerr constant $)=0.410 \times 10^{-7}$.

Previous Measurements.-The following dipole moments (in D units) have been recorded: trimethyl phosphate, $3.02\left(\mathrm{CCl}_{4}\right)$; ${ }^{4}$ triethyl phosphate, $3.07\left(\mathrm{CCl}_{4}\right),{ }^{4} 3.08\left(\mathrm{C}_{6} \mathrm{H}_{6}\right),{ }^{5} 3.07\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$, ${ }^{6}$ $3.00\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) ;^{7}$ tri-n-propyl phosphate, $3.09\left(\mathrm{CCl}_{4}\right) ;^{4}$ tri-isopropyl phosphate, $2.85\left(\mathrm{CCl}_{4}\right) ;{ }^{4}$ triphenyl phosphate, $\left.2.79\left(\mathrm{C}_{6} \mathrm{H}_{6}\right),{ }^{8} 2.81\left(\mathrm{C}_{6} \mathrm{H}_{8}\right),{ }^{9} 2.89\left(\mathrm{CCl}_{4}\right)\right)^{4}$ trimethyl phosphite, $1.83\left(\mathrm{CCl}_{4}\right) ;{ }^{4}$ triethyl phosphite, $1.96\left(\mathrm{CCl}_{4}\right) ;{ }^{4}$ tri-isopropyl phosphite, $1.98\left(\mathrm{CCl}_{4}\right) ;^{4}$ triphenyl phosphite, $2.02\left(\mathrm{C}_{6} \mathrm{H}_{6}\right),{ }^{9} 1.59\left(\mathrm{CCl}_{4}\right),{ }^{4} 1.71\left(\mathrm{C}_{6} \mathrm{H}_{6}\right) .{ }^{10}$

Discussion

Polarities and Polarisabilities of the Phosphate and Phosphite Groups.-The electric moment of the phosphate ester, 4-methyl-2,6,7-trioxa-1-phosphabicyclo[2,2,2]octane 1-oxide can be resolved as $\mu\left[\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{PO}\right](=7 \cdot 10 \mathrm{D}$ from Brown. Verkade, and Piper $\left.{ }^{11}\right)=\mu\left(\mathrm{O}_{3} \mathrm{PO}\right)+3 \mu(\mathrm{C}-\mathrm{O})$, where each $\mu(\mathrm{C}-\mathrm{O})$, acting parallel to the molecular symmetry axis, ${ }^{12}$ reinforces the phosphate group moment [see (I)]. The magnitude of $\mu(\mathrm{C}-\mathrm{O})$, which includes the $\mathrm{C}-\mathrm{H}$ bond contributions, is calculable as $\mathbf{1} \cdot \mathbf{1}_{\mathbf{7}} \mathrm{D}$ from $\mu\left(\mathrm{Me}_{2} \mathrm{O}\right)=$

[^1]$1.32 \mathrm{D}^{13}$ together with an angle $\mathrm{C}-\mathrm{O}-\mathrm{C}$ of 111° (ref. $14, M=138$). It follows that $\mu\left(\mathrm{O}_{3} \mathrm{PO}\right)=3.6 \mathrm{D}$ and is directed in the $+X$ direction in (I). Similarly, we calculate, from $\mu\left[\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{P}\right]=4 \cdot 15 \mathrm{D},{ }^{11}$ that $\mu\left(\mathrm{O}_{3} \mathrm{P}\right)=0.6 \mathrm{D}$, and this also acts in the $+X$ direction.

Aroney, Le Fèvre, and Saxby ${ }^{12}$ have estimated, from electric birefringence data, the anisotropic polarisabilities of molecules $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{X}(\mathrm{X}=\mathrm{PO}$ or P$)$ as solutes in dioxan.

(I)

Deduction of the $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{H}$, and $\mathrm{C}-\mathrm{O}$ bond contributions ${ }^{3,15}\left[b_{\mathrm{L}}(\mathrm{C}-\mathrm{C})=0.099 ; b_{\mathrm{T}}(\mathrm{C}-\mathrm{C})=\right.$ $b_{\mathrm{V}}(\mathrm{C}-\mathrm{C})=0.027 ; b_{\mathrm{L}}(\mathrm{C}-\mathrm{H})=b_{\mathrm{T}}(\mathrm{C}-\mathrm{H})=b_{\mathrm{V}}(\mathrm{C}-\mathrm{H})=0.064 ; \quad b_{\mathrm{L}}(\mathrm{C}-\mathrm{O})=0.089, b_{\mathrm{T}}(\mathrm{C}-\mathrm{O})=$ $\left.b_{\mathrm{V}}(\mathrm{C}-\mathrm{O})=0.046\right]$,* by way of equations (3) and (4) in ref. 12, leads to the following polarisability specifications for the phosphate and the phosphite groups: $b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right)=0.419$, $b_{2}\left(\mathrm{O}_{3} \mathrm{PO}\right)=b_{3}\left(\mathrm{O}_{3} \mathrm{PO}\right)=0.275 ; \quad b_{1}\left(\mathrm{O}_{3} \mathrm{P}\right)=0.413 ; \quad b_{2}\left(\mathrm{O}_{3} \mathrm{P}\right)=b_{3}\left(\mathrm{O}_{3} \mathrm{P}\right)=0.350 . \quad$ These differ slightly from the values recorded in Table 4 of ref. 12, as we now use recently revised estimates ${ }^{15}$ of the $\mathrm{C}-\mathrm{O}$ bond polarisabilities.

Molecular Conformations of Trimethyl Phosphate and Trimethyl Phosphite.-Molecular models indicate that there can only be restricted rotation about the $\mathrm{P}-\mathrm{O}-\mathrm{Me}$ bonds. Initially we consider five conformations of trimethyl phosphate (IIa-e). In (IIa) and (IIb) each $\mathrm{P}-\mathrm{O}-\mathrm{C}$ plane includes the $\mathrm{P}=\mathrm{O}$ bond axis [the methyl groups can then be above the $X Y$ plane (that of the three oxygen atoms) as in (IIa) or below as in (IIb); in (IIc) the carbon atoms are located symmetrically in the XY plane; in (IId), two methyl groups are

(IIa)
(IId)

(IIb)

as in (IIa) and one as in (IIb) ; (IIe) is generated from (IIa) by rotation, in opposite senses, of two $\mathrm{O}-\mathrm{Me}$ groups about their respective $\mathrm{P}-\mathrm{O}$ bonds as axes until the carbons are in the $X Y$ plane. In the following calculations we assume that $\angle \mathrm{O}=\mathrm{P}=\mathrm{O}=115^{\circ}$ (see refs. 16 and 17), and $\angle \mathrm{P}-\mathrm{O}-\mathrm{C}=110^{\circ}$. Theoretical values of the polarisability semi-axes, dipole moments, and molar Kerr constants for structures (IIa-e) of trimethyl phosphate were calculated by the method outlined in ref. 3c, p. 2486. These are listed in Table 3, together with the computed values for analogous conformations of trimethyl phosphite. Comparison

[^2]with the experimental quantities of Table 2 shows that although an " effective" conformation, or, alternatively, a mixture of conformations, can be found for trimethyl phosphite which will have the required dipole moment and molar Kerr constant, no such correlation

Table 3.

Calculated polarisabilities, dipole moments, and molar Kerr constants.

Conformation	Trimethyl phosphate			Trimethyl phosphite		
	b_{1}	μ (D)	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$	b_{1}	μ (D)	$10^{12}{ }_{\mathrm{m}} \mathrm{K}$
(IIa)	$\left\{\begin{array}{l}b_{1}=1.198 \\ b_{2}=1.021 \\ b_{3}=1.021\end{array}\right.$	$1 \cdot 1$	+26	$\left\{\begin{array}{l}1.192 \\ 1.096 \\ 1.096\end{array}\right.$	$1 \cdot 9$	+38
(IIb)	$\left\{\begin{array}{l}b_{1}=1.261 \\ b_{2}=0.990 \\ b_{3}=0.990\end{array}\right.$	$7 \cdot 1$	+1512	$\left\{\begin{array}{l}1.255 \\ 1.065 \\ 1.065\end{array}\right.$	$4 \cdot 1$	+354
(IIc)	$\left\{\begin{array}{l}b_{1}=1.133 \\ b_{2}=1.054 \\ b_{3}=1.054\end{array}\right.$	3.6	+114	$\left\{\begin{array}{l}1.127 \\ 1.129 \\ 1.129\end{array}\right.$	$0 \cdot 6$	0
(IId)	$\left\{\begin{array}{l}b_{1}=0.999 \\ b_{2}=1.021 \\ b_{3}=1.220\end{array}\right.$	$3 \cdot 3$	+197	$\left\{\begin{array}{l}1.073 \\ 1.096 \\ 1.215\end{array}\right.$	$0 \cdot 9$	-7
(IIe)	$\left\{\begin{array}{l}b_{1}=1.039 \\ b_{2}=1.043 \\ b_{3}=1.159\end{array}\right.$	$3 \cdot 6$	+19	$\left\{\begin{array}{l}1.107 \\ 1.118 \\ 1.160\end{array}\right.$	$2 \cdot 3$	-5

can be attained for trimethyl phosphate. Without greatly altering any of the basic assumptions, it is not possible to calculate for any rotational isomer a molar Kerr constant which is sufficiently negative to agree with experiment. We offer no explanation for this; it may be that the polarisability specifications of the phosphate group, and most likely of the phosphite group also, in the open-chain compounds are significantly different from those for the " cage" structure.

The Trialkyl Phosphates as Ellipsoids of Revolution.-If the assumption is made that the anisotropies of trimethyl phosphate and its homologues can be represented by ellipsoids of revolution, then $b_{1} \neq b_{2}=b_{3}, \mu_{1}=\mu_{\text {obs., }}$, and $\mu_{2}=\mu_{3}=0$. The usual expressions for the molar Kerr constant and the electronic polarisation simplify to

$$
\begin{align*}
&{ }_{\mathrm{m}} K\left[(\mathrm{RO})_{3} \mathrm{PO}\right]=4 \pi \boldsymbol{N}\left[{ }_{\mathrm{D}} P\left(b_{\mathbf{1}}-b_{2}\right)^{2} /{ }_{\mathrm{E}} P \boldsymbol{k} T+\mu^{2}\left(b_{1}-b_{2}\right) / \boldsymbol{k}^{2} T^{2}\right] / 405 \tag{1}\\
&{ }_{\mathrm{E}} P\left[(\mathrm{RO})_{3} \mathrm{PO}\right]=4 \pi \boldsymbol{N}\left(b_{1}+2 b_{2}\right) / 9, \tag{2}
\end{align*}
$$

where ${ }_{\mathrm{D}} P$ and ${ }_{\mathrm{F}} P$ are the distortion and the electronic polarisations, respectively.
Table 4.
The electronic polarisations and principal polarisability semi-axes of the molecules (RO) ${ }_{3} \mathrm{PO}$.

R	Me	Et	Prin	Pr	$\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11}$
${ }_{\mathrm{E}} \mathrm{P}$ (c.c.)	27-4*	$41.0 \dagger$	$54 \cdot 7 \dagger$	$54 \cdot 7 \dagger$	$81.9 \dagger$
$b_{1} \ldots \ldots .$.	1.033	1.541	2.057	$2 \cdot 071$	$3 \cdot 118$
$b_{2}=b_{3}$	$1 \cdot 112$	1.667	$2 \cdot 223$	$2 \cdot 216$	$3 \cdot 310$

* By extrapolation of the refractivities listed by Vogel and Cowan, J., 1943, 16. † By addition to ${ }_{\mathrm{E}} P\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]=\mathbf{2 7 . 4}$ c.c. of the appropriate number of $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bond equivalents (from Le Fèvre and Steel, Chem. and Ind., 1961, 670).

Now, $\mu\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]=+3 \cdot 18 \mathrm{D}($ from Table 2$)=+\mu\left(\mathrm{O}_{3} \mathrm{PO}\right) \pm 3 \mu(\mathrm{C}-\mathrm{O}) \cos \phi$, where ϕ, the inclination of each $\mathrm{O}-\mathrm{C}$ bond with the symmetry axis, can only be 83° and such that the methyl groups are above the plane of the oxygen atoms [see (III)]. It follows then that

$$
\begin{equation*}
b_{1}\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]=b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right)+9 b_{\mathrm{L}}(\mathrm{C}-\mathrm{H})+3 b_{\mathrm{L}}(\mathrm{C}-\mathrm{O}) \cos ^{2} 83+3 b_{\mathrm{T}}(\mathrm{C}-\mathrm{O}) \sin ^{2} 83 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\Sigma b\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]=\Sigma b\left(\mathrm{O}_{3} \mathrm{PO}\right)+9 \Sigma b(\mathrm{C}-\mathrm{H})+3 \Sigma b(\mathrm{C}-\mathrm{O}) \tag{4}
\end{equation*}
$$

from which we estimate $b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right) / b_{2}\left(\mathrm{O}_{3} \mathrm{PO}\right)=0.95$. The above conclusions are not seriously affected by small variations in our estimate of $\mu\left(\mathrm{O}_{3} \mathrm{PO}\right)$. If, for example, each $\mathrm{C}-\mathrm{O}$ bond moment in the molecule $\mathrm{MeC}\left(\mathrm{CH}_{2} \mathrm{O}\right)_{3} \mathrm{PO}$ were to contribute $1 \cdot 3 \mathrm{D}$, then $\mu\left(\mathrm{O}_{3} \mathrm{PO}\right)$ would be $3 \cdot 2 \mathrm{D}$; ϕ for trimethyl phosphate would then be 90° and $b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right) / b_{2}\left(\mathrm{O}_{3} \mathrm{PO}\right)$ would be 0.96 .

(III a)

(IIIb)

The four tri-n-alkyl phosphates examined have almost identical moments (all lie within the range $3.15 \pm 0.03 \mathrm{D}$). This suggests that the effective dispositions of the $\mathrm{C}-\mathrm{O}$ bond dipoles with respect to $\mu\left(\mathrm{O}_{3} \mathrm{PO}\right)$ must be similar throughout. If we assume that the group $\left(\mathrm{H}_{2} \mathrm{CO}\right)_{3} \mathrm{PO}$ in triethyl phosphate has a trimethyl phosphate-like structure (less three $\mathrm{C}-\mathrm{H}$ bonds), then the inclination η of each $\mathrm{C}-\mathrm{C}$ bond with the symmetry axis is calculable, by way of the following relation, as 78°.

$$
\begin{equation*}
b_{1}\left[(\mathrm{EtO})_{3} \mathrm{PO}\right]=b_{1}\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]+6 b_{\mathrm{L}}(\mathrm{C}-\mathrm{H})+3 b_{\mathrm{L}}(\mathrm{C}-\mathrm{C}) \cos ^{2} \eta+3 b_{\mathrm{T}}(\mathrm{C}-\mathrm{C}) \sin ^{2} \eta \tag{5}
\end{equation*}
$$

In an analogous manner we calculate that the terminal $C-C$ links in tri-n-propyl phosphate make 61° with the b_{1} direction, whilst in tri-n-pentyl phosphate the mean inclination of the $\mathrm{C}-\mathrm{C}$ links γ and $\delta\left(\mathrm{CH}_{3}{ }^{\delta} \mathrm{CH}_{2}{ }^{\gamma} \mathrm{CH}_{2}{ }^{\beta} \mathrm{CH}_{2}{ }^{\alpha} \mathrm{CH}_{2}-\mathrm{O}\right)$ with $b_{1}\left[\left(\mathrm{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{O}\right)_{3} \mathrm{PO}\right]$ is 57°.

The Trialkyl Phosphites.-Polarisability specifications for the molecules (RO) ${ }_{3} \mathrm{P}$, where $\mathrm{R}=\mathrm{Me}, \mathrm{Et}, \mathrm{Pr}^{\mathrm{i}}$, and $\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{21}$, are listed in Table 5. For trimethyl phosphite the

Table 5.
The electronic polarisations and principal polarisability semi-axes of the molecules (RO$)_{3} \mathrm{P}$.

R	Me	Et	Pr^{1}	$\mathrm{n}-\mathrm{C}_{10} \mathrm{H}_{21}$
${ }_{\mathrm{E}} P$ (c.c.) *	$28 \cdot 6$	$42 \cdot 2$	$55 \cdot 9$	$151 \cdot 3$
b_{1}	1.203	1.665	$2 \cdot 129$	$5 \cdot 672$
$b_{2}=b_{3}$	$1 \cdot 100$	1.677	$2 \cdot 259$	6.160

* Calculated from the electronic polarisation of the corresponding phosphate by subtraction of one $\mathrm{P}=\mathrm{O}$ bond equivalent $\left[{ }_{\mathrm{E}} P(\mathrm{P}=\mathrm{O})=0.95 R_{\mathrm{D}}(\mathrm{P}=\mathrm{O})=1.2\right.$ c.c., Gillis, Rev. Pure Appl. Chem. (Australia), 1960, 10, 21].
observed dipole moment ($=1.81 \mathrm{D}$ from Table 2) could be directed in the $+Z$ or $-Z$ directions [where Z is disposed as in (IIa) for trimethyl phosphate] and we have $\pm \mu\left[(\mathrm{MeO})_{3} \mathrm{P}\right]=+\mu\left(\mathrm{O}_{3} \mathrm{P}\right) \pm 3 \mu(\mathrm{C}-\mathrm{O}) \cos \phi$, where ϕ is the inclination of each $\mathrm{C}-\mathrm{O}$ bond with the symmetry axis. Solution yields $\phi=47^{\circ}$ or 70° dependent on whether the carbon atoms lie, respectively, above or below the plane of the oxygen atoms. It follows also, from equations similar to (3), (4), and (5), that $b_{1}\left(\mathrm{O}_{3} \mathrm{P}\right) / b_{2}\left(\mathrm{O}_{3} \mathrm{P}\right)=1 \cdot 22\left(\phi=47^{\circ}\right)$ or $\mathrm{I} \cdot 44$ ($\phi=70^{\circ}$); each $\mathrm{C}-\mathrm{C}$ link in triethyl phosphite is perpendicular to the b_{1} direction (i.e., $\eta=90^{\circ}$); for tri-n-decyl phosphite the mean inclination with the b_{1} direction of the $\mathrm{C}-\mathrm{C}$ links beyond a triethyl phosphite (less two C-H bonds) nucleus is 66°.

Triphenyl Phosphate and Triphenyl Phosphite. -The principal polarisability semi-axes for these molecules, which are calculable (if $b_{1} \neq b_{2}=b_{3}$) from their respective molar Kerr constants and electronic polarisations, are listed in Table 6. We can equate $b_{1}\left[(\mathrm{PhO})_{3} \mathrm{PO}\right]$ to the component bond and group polarisabilities in the following manner:

$$
\begin{align*}
b_{1}\left[(\mathrm{PhO})_{3} \mathrm{PO}\right]= & b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right)+3\left\{\left[b_{\mathrm{L}}(\mathrm{C}-\mathrm{O})+b_{\mathrm{L}}(\mathrm{Ph})\right] \cos ^{2} \alpha\right. \\
& \left.+\left[b_{\mathrm{T}}(\mathrm{C}-\mathrm{O})+b_{\mathrm{T}}(\mathrm{Ph}) \cos ^{2} \beta+b_{V}(\mathrm{Ph}) \sin ^{2} \beta\right] \sin ^{2} \alpha\right\} \tag{6}
\end{align*}
$$

Table 6.
The electronic polarisations and principal polarisability semi-axes of triphenyl phosphate and triphenyl phosphite.

Solute	${ }_{\mathbf{E}} P$ (c.c.)	b_{1}	$b_{2}=b_{3}$
$(\mathrm{PhO})_{3} \mathrm{PO}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	$83 \cdot 1^{*}$	$3 \cdot 197$
$(\mathrm{PhO})_{3} \mathrm{P}$	$\ldots \ldots \ldots \ldots \ldots \ldots$	$84 \cdot 3 \dagger$	$3 \cdot 197$

* Calculated as ${ }_{\mathbf{E}} P\left[(\mathrm{MeO})_{\mathbf{3}} \mathrm{PO}\right]-9_{\mathrm{E}} P(\mathrm{C}-\mathrm{H})+3_{\mathrm{E}} P(\mathrm{Ph}) . \quad \dagger$ Equals $\mathbf{E} P\left[(\mathrm{PhO})_{3} \mathrm{PO}\right]-{ }_{\mathrm{E}} P(\mathrm{P}=\mathrm{O})$.
where $b_{1}\left(\mathrm{O}_{3} \mathrm{PO}\right)$ is derived from $b_{1}\left[(\mathrm{MeO})_{3} \mathrm{PO}\right]$ by way of equation (3); $b_{\mathrm{L}}(\mathrm{Ph})$ (which is located along the 1,4 -axis $)=b_{\mathrm{T}}(\mathrm{Ph})=1 \cdot 056, b_{\mathrm{V}}(\mathrm{Ph})=0.672 ; \alpha$ is the angle which each $\mathrm{C}_{\mathrm{Ar}}-\mathrm{O}$ bond makes with the normal (through O) to the $b_{2} b_{3}$ plane; β is the angle between $b_{\mathrm{T}}(\mathrm{Ph})$ and its projection in the plane defined by its $b_{\mathrm{L}}(\mathrm{Ph})$ and a line parallel to the b_{1} direction. If, for example, the benzene ring planes are parallel to b_{1} then $\beta=0^{\circ}$. In this calculation we assume $\alpha=83^{\circ}$ (as in trimethyl phosphate). This appears reasonable from Leybold models, and is supported qualitatively by the evidence of Ketelaar et al. ${ }^{7}$ who state that the dipole moment of tri- p-nitrophenyl phosphate is larger than that of triphenyl phosphate. They do not quote $\mu\left[\left(p-\mathrm{O}_{2} \mathrm{~N}^{-} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right)_{3} \mathrm{PO}\right]$ but they provide data for the corresponding thiophosphates, from which the difference $\Delta \mu=$ $\mu\left[\left(p-\mathrm{O}_{2} \mathrm{~N} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \cdot \mathrm{O}\right)_{3} \mathrm{PS}\right]-\mu\left[(\mathrm{PhO})_{3} \mathrm{PS}\right]$ is equal to 0.75 D This is equivalent to three nitrobenzene moments ${ }^{3} a$ inclined 86° to the three-fold symmetry axis such that they reinforce $\mu\left(\mathrm{O}_{3} \mathrm{PS}\right)$. Solution of equation (6) yields $\beta=38^{\circ}$. With triphenyl phosphite it seems unlikely, from an examination of scale models, that the phenyl 1,4 -axes would be more than 20° above or below the plane of the oxygen atoms. Taking into account the two possible values of $b_{1}\left(\mathrm{O}_{3} \mathrm{P}\right)$ (from trimethyl phosphite), we calculate that for $\alpha=$ $90 \pm 20^{\circ}, \beta$ lies in the range $46 \pm 4^{\circ}$.

The authors gratefully acknowledge gifts of samples from Messrs. Robert Corbett and Co. (Sydney), the Hooker Chemical Corporation (U.S.A.), Mr. D. Izsak (the University of Sydney), and the award of a Commonwealth Research Scholarship to J. D. S.

University of Sydney, N.S.W., Australia.
[Received, July 12th, 1963.]

[^0]: whence $\Sigma 10^{7} \Delta B / \Sigma w_{2}=-0.99 ; \Sigma \Delta n / \Sigma w_{2}=0.064 ; \Sigma \Delta \varepsilon / \Sigma w_{2}=1.05 ; \Sigma \Delta d / \Sigma w_{2}=0.24$.

[^1]: ${ }^{1}$ Le Fèvre, " Dipole Moments," Methuen, London, 3rd edn., 1953.
 ${ }^{2}$ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, $J_{\text {., }}$ 1956, 1405.
 ${ }^{3}$ Le Fèvre and Le Fèvre, (a) J., 1953, 4041; (b) Rev. Pure Appl. Chem. (Australia), 1955, 5, 261 ; (c) in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience, New York and London, 3rd edn., vol. 1, ch. XXXVI, p. 2459.
 ${ }^{4}$ Arbuzov and Rakov, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1950, 237.
 ${ }^{5}$ Estok and Wendlandt, J. Amer. Chem. Soc., 1955, 7ry, 4767.
 ${ }^{6}$ Svirbely and Lander, J. Amer. Chem. Soc., 1948, 70, 4121.
 7 Ketelaar, Gersmann, and Hartog, Rec. Trav. chim., 1958, ry, 982.
 ${ }^{8}$ Cowley and Partington, Nature, 1935, 136, 643.
 ${ }^{9}$ Lewis and Smyth, J. Amer. Chem. Soc., 1940, 62, 1529.
 ${ }^{10}$ French and Tomlinson, J., 1961, 311.
 ${ }_{11}$ Brown, Verkade, and Piper, J. Phys. Chem., 1961, 65, 2051.
 ${ }_{12}$ Aroney, Le Fèvre, and Saxby, J., 1963, 4938.

[^2]: * Bond and molecular polarisabilities are quoted throughout in 10^{-23} c.c. units.
 ${ }^{13}$ Aroney, Le Fèvre, and Saxby, J., 1962, 2886.
 ${ }^{14}$ Sutton, "Tables of Interatomic Distances and Configuration in Molecules and Ions," Chem. Soc. Spec. Publ. No. 11, 1958.
 ${ }^{15}$ Le Fèvre, Sundaram, and Pierens, $J ., 1963,479$.
 16 Davies and Stanley, Acta Cryst., 1962, 15, 1092.
 ${ }^{17}$ Kraut and Jensen, Acta Cryst., 1963, 16, 79.

